

Find the two points on the parabola $f(x) = x^2$ such that the tangent line of f passes through the point (0, -9).

Use the definition of a derivative to differentiate $f(x) = \sqrt{1+x}$.

Use the definition of a derivative to find the slope of the tangent line to the curve $y=x^2-2$ at the point (2,2).

Differentiate $1 + x + x^2 + \sin(x) + \cos(x) + e^x$

Find $\frac{dy}{dx}$:

(a)
$$y = \frac{x^3 \ln x}{x+2}$$

(b)
$$y = 5x^2 + \sin^2(\cos(4x))$$

Find
$$\frac{d}{dx} \ln \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

Find y' if $x^y = y^x$

Using logarithmic differentiation, find the derivative of the following:

(a)
$$y = x^{lnx}$$

(b)
$$y = \frac{(x^2+3)^{100}x^{x^2}}{(5x^2-2)^3}$$

